1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید
1. Alabede, James O., Zaimah Zainol Ariffin and Kamil Md Idris. (2011). Individual Taxpayers' Attitude and Compliance Behavior in Nigeria: The Moderating Role of Financial Condition and Risk Preference", Journal of Accounting and Taxation Vol. 3(5), pp. 91- 104.
2. Bagherpour M. A. Bagheri M. Khadem H. Hosieni Pour R. (2012). Examine the Effects of Financial and Non-Financial Variables on Tax Evasion Using of Data Mining Techniques: Automotive and Parts Manufacturing Industry. Empirical Studies in Financial Accounting Quarterly34: 103- 12, (Persian)
3. Brealey, R. and s. Myers (1991). Principles of Corporate Finance, Furth Edition, New York, McGraw-Hill, Inc.
4. Dastgir M, Izadinia N, Askari A, Ramezani M M. (2015). Providing a Model for Corporate Risk- based Audit Selection in Iran. Journal of Tax Research. 23 (25), (Persian).
5. Dastgir M, Qaribi M. (2016). Using Data Mining Techniques to Enhance Tax Evasion Detection Performance. J Tax Res. 23 (28), (Persian).
6. Francisco J. Delgado, Elena Fernández-Rodrígue, Roberto García-Fernández, Manuel Landajo, Antonio Martínez-Arias (2023). Tax Avoidance and Earnings Management: a Neural Network Approach for the Largest European Economies, Financial Innovation volume 9, Article number: 19. [
DOI:10.1186/s40854-022-00424-8]
7. Gallemore, J., and E. labro. (2015). The Importance of the Internal Information Environment for Tax Avoidance. Journal of Accounting and Economics. 60(1): 149-167. [
DOI:10.1016/j.jacceco.2014.09.005]
8. Hosieni Pour R. Bagherpour M. Lashani M. A. Salehi M. (2017). Identify Financial and Non-Financial Variables Affecting the Basis of Auditing Report Adjustment Related to Accounting Estimates: A Data Mining Approach. Audit Science. 17(66): 107-130, (Persian).
9. Iranian National Tax Administrations Research Database (2022). Approaches to Deal with Tax Evasion and Avoidance in Selected Countries, (Persian).
10. Khoramnia H., khoramnia A A, Mehrkam M. (2017). The Influence of Conservatism on Relationship between Operational Cash Flow and Definitive Taxable Income. Journal of Tax Research. 25 (35) :128-156, (Persian).
11. Masihi M, Yaghobnejad A, Kaighobadi A, Torabi T, (2019). Using Data Mining Techniques to Measure Tax Risk, Value Added Taxpayers, Iranian Financial Engineering Association, (Persian).
12. Namazi M, Sadeghzadeh Maharluie M. (2018). Predicting Tax Evasion by Decision Tree Algorithms. Quarterly Financial Accounting Journal. 9 (36) :76-101. (persian)
13. Neuman, S., T. Omer and A. Schmidt (2013). Risk and Return: Dose Tax Risk Reduce Firms' Effective Tax Rates?, Working Paper, Texas A&M University and North Carolina State University. [
DOI:10.2139/ssrn.2215129]
14. OECD, (2004). Compliance Risk Management: Audit Case Selection System, 2004, (Persian).
15. Pourzamani Z, Shamsi Jamkhaneh A. (2009). Factors Involved in the Difference between Taxable Income Declared by Business Corporations and Taxable Income Assessed by Tax Authorities: Case of West Tehran Tax Affairs Head Office . Journal of Tax Research. 17 (5) :9-26, (Persian).
16. Rahimikia E, Mohamadi S, Ghazanfari M. (2015). Tax Evasion Detection by Using Combinatory Elligent System. Journal of Tax Research. 23 (26) :136-164. (Persian).
17. Countries Experience . Journal of Tax Research. 21 (18) :77-114, (Persian)
18. Taghavi Fard M, Raeesi Vanani I, Panahi R. (2017). A Predictive Analytics for Detection of VAT Taxpayers Evasion through Classification & Clustering Algorithms. Journal of Tax Research. 25 (35) :11-36, (Persian).
19. Watts, R. (2003). Conservatism in Accounting Part I: Explanations and Implications. Accounting Horizons 17(3): 207-222. [
DOI:10.2308/acch.2003.17.3.207]
20. Kirchler, E. (2007). The Economic Psychology of Tax Behavior. Cambridge: Cambridge University Press. [
DOI:10.1017/CBO9780511628238]
21. De Ghanbari nia. Mihir A., Alexander Dyckb, Luigi Zingalesc,ch. (2007).
22. Theft and Taxes. Journal of Financial Economics 84591-623, (Persian).