Volume 18, Issue 8 (2010)                   J Tax Res 2010, 18(8): 177-210 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zohoorian A. Risk-based Tax Audit Selection. J Tax Res. 2010; 18 (8) :177-210
URL: http://taxjournal.ir/article-1-120-en.html
M.A. in Accounting and Tax Expert at INTA
Abstract:   (9015 Views)
Due to the problems such as large and increasing volume of tax returns, lack of pre-assessment, time limit and lack of standards for tax auditing, limited manpower, the arbitrary judgment in this field and failure to provide tax returns by some taxpayers, a new approach is needed to solve these problems. The present research aims to apply the most efficient up-to-date methods and techniques of the world (chaos theory and artificial neural network theory) by which Iranian National Tax Administration (INTA) would be capable of computerized assessment of tax returns on the basis of the difference percentage between declared and forecasted pre-tax incomes and select tax returns with the greatest risks and refer them to the tax auditors for auditing. In this regard, the chaotic time series variable would be forecasted by artificial neural network non-linear model. The required data has been gathered through a library method. Parsportfolio Data Management Software has been used for collecting the data of companies listed in Tehran Stock Exchange. Meanwhile, the research has used the statistics published by Iranian Statistics Centre (ISC), Central Bank of Islamic Republic of Iran (CBI) and (INTA).
Full-Text [PDF 813 kb]   (2099 Downloads)    
Type of Study: Research |
Received: 2009/10/26 | Accepted: 2010/04/7 | Published: 2014/03/14

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Tax Research

Designed & Developed by : Yektaweb