1. Alexey Tselykh, Margarita Knyazeva, Elena Popkova, Antonina Durfee, and Alexander Tselykh. An attributed graph mining approach to detect transfer pricing fraud. In Proceedings of the 9th International Conference on Security of Information and Networks, pages 72-75. ACM, 2016. [
DOI:10.1145/2947626.2947655]
2. Al-Hagery, Mohammed. (2019). Extracting hidden patterns from dates' product data using a machine learning technique. IAES International Journal of Artificial Intelligence (IJ-AI). 8. 205. 10.11591/ijai.v8.i3.pp205-214. [
DOI:10.11591/ijai.v8.i3.pp205-214]
3. Arab Mazar A. , Bagheri , B. , Jafar Parvar , M . (2013), Tax approach to transfer pricing and its investigation in Iran. Tax research paper. 22 (21), 9-38. (Persian).
4. Asadi Yusufabad, M. , Pifeh, A. , Ahmadzadeh, H. (1401). The effect of transactions with related parties on company value with an emphasis on social responsibility. (Persian).
5. Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of china stock market. In 2015 IEEE International Conference on Big Data (Big Data), 2823-2824. [
DOI:10.1109/BigData.2015.7364089]
6. Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83,187-205. [
DOI:10.1016/j.eswa.2017.04.030]
7. Feng Tian, Tian Lan, Kuo-Ming Chao, Nick Godwin, Qinghua Zheng, Nazaraf Shah, and Fan Zhang. Mining suspicious tax evasion groups in big data. IEEE Transactions on Knowledge and Data Engineering, 28(10):2651-2664, 2016. [
DOI:10.1109/TKDE.2016.2571686]
8. Gao, P., Zhang, R., & Yang, X. (2020). The application of stock index price prediction with neural network. Mathematical and Computational Applications, 25(3), 53-69. [
DOI:10.3390/mca25030053]
9. Garderodbari , M. , Dadashi I. , Mohseni Maleki , B . , Zabihi A. (1402). Predicting tax evasion of legal taxpayers with an emphasis on economic components, taxpayers and tax auditors; Relying on artificial intelligence. Tax research paper. 32 (58):131-164. (Persian). [
DOI:10.61186/taxjournal.32.58.6]
10. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press
11. Gudelek, M. U., Boluk, S. A., & Ozbayoglu, A. M. (2017). A deep learning based stock trading model with 2-D CNN trend detection. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1-8. [
DOI:10.1109/SSCI.2017.8285188]
12. Hazra, T., Anjaria, K. Applications of game theory in deep learning: a survey. Multimed Tools Appl 81, 8963-8994 (2022). [
DOI:10.1007/s11042-022-12153-2]
13. Heij, Christiaan & De Boer, Paul & Franses, Philip & Kloek, Teun & Van Dijk, Herman. (2004). Econometric Methods with Applications in Business and Economics. 10.1093/oso/9780199268016.001.0001. [
DOI:10.1093/oso/9780199268016.001.0001]
14. Hensher, D.A., Greene, W.H. The Mixed Logit model: The state of practice. Transportation 30, 133-176 (2003). [
DOI:10.1023/A:1022558715350]
15. J. Ruan, Z. Yan, B. Dong, Q. Zheng, and B. Qian. Identifying suspicious groups of affiliated-transaction-based tax evasion in big data. Information Sciences, 477:508-532, Mar. 2019. doi: 10.1016/j.ins.2018.11.008 [
DOI:10.1016/j.ins.2018.11.008]
16. Javadian Kotanaie, A . , Pouraghajan Sarhamami, A. , Hosseini Shirvani, M. (2019), Presenting a tax fraud detection model based on the combination of the improved ID3 decision tree algorithm and multilayer perceptron neural networks, Management Accounting, Volume 13, Number 46, Page 53 -70. (Persian).
17. Ji, L., Zou, Y., He, K., & Zhu, B. (2019). Carbon futures price forecasting based with ARIMA-CNN-LSTM model. Procedia Computer Science, 162, 33-38. [
DOI:10.1016/j.procs.2019.11.254]
18. K. J. Klassen, P. Lisowsky, and D. Mescall. Transfer pricing: Strategies, practices, and tax minimization. Contemporary Accounting Research, 34(1):455-493, 2017. [
DOI:10.1111/1911-3846.12239]
19. K.-W. Hsu, N. Pathak, J. Srivastava, G. Tschida, and E. Bjorklund. Data mining based tax audit selection: a case study of a pilot project at the min- nesota department of revenue. In Real world data mining applications, pp. 221-245. Springer, 2015. [
DOI:10.1007/978-3-319-07812-0_12]
20. Karhunen J, Raiko T, Cho KH. Unsupervised deep learning: a short review. In: Advances in independent component analysis and learning machines. 2015; p. 125-42. [
DOI:10.1016/B978-0-12-802806-3.00007-5]
21. Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R (Vol. 65). New York, NY: Springer. [
DOI:10.1007/978-1-4939-0983-4]
22. L. Liu, T. Schmidt-Eisenlohr, and D. Guo. International transfer pricing and tax avoidance: Evidence from linked trade-tax statistics in the uk. Review of Economics and Statistics, pp. 1-45, 2017. [
DOI:10.17016/ifdp.2017.1214]
23. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436 [
DOI:10.1038/nature14539]
24. Lee, S. I., & Yoo, S. J. (2020). Threshold-based portfolio: The role of the threshold and its applications. The Journal ofSupercomputing, 76(10), 8040-8057. [
DOI:10.1007/s11227-018-2577-1]
25. Leite, Roger & Gschwandtner, Theresia & Miksch, Silvia & Kriglstein, Simone & Pohl, Margit & Gstrein, Erich & Kuntner, Johannes. (2017). EVA: Visual Analytics to Identify Fraudulent Events. IEEE Transactions on Visualization and Computer Graphics. PP. 1-1. 10.1109/TVCG.2017.2744758. [
DOI:10.1109/TVCG.2017.2744758]
26. Li, J. , Wang, X. and Wu, Y. (2020). 'Can government improve tax compliance by adopting advanced information technology? Evidence from the Golden Tax Project III in China', Economic Modelling, pp. 384-397. [
DOI:10.1016/j.econmod.2020.08.009]
27. Li, Y., & Dai, W. (2020). Bitcoin price forecasting method based on CNN-LSTM hybrid neural network model. The Journal of Engineering, 2020(13), 344-347. [
DOI:10.1049/joe.2019.1203]
28. Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics, 10(3), 287. [
DOI:10.3390/electronics10030287]
29. Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN-LSTM model for gold price time-series forecasting. Neural Computing & Applications, 32(23), 17351-17360. [
DOI:10.1007/s00521-020-04867-x]
30. Long, J Scott & Freese, Jeremy. (2006). Regression Models for Categorical Dependent Variables using STATA. College Station, Tex Stata Corp LP. 25.
31. M. J. Ferrantino, X. Liu, and Z. Wang. Evasion behaviors of exporters and importers: Evidence from the us-china trade data discrepancy. Journal of international Economics, 86(1):141-157, 2012. [
DOI:10.1016/j.jinteco.2011.08.006]
32. Maddala, G. S. (1983) ˝Introduction to Econometrics˝, Third Edition, Formerly Ohio State Univercity
33. Myerson RB (2013) Game theory. Harvard university press [
DOI:10.2307/j.ctvjsf522]
34. Namazi, M. , Sadeghzadeh Maharloui, M. (2017). Investigating the usefulness of the relief variable selection method in improving the results of tax evasion prediction using data mining. Applied research in financial reporting, 7(13), 44-7. (Persian).
35. Narahari Y (2014) Game theory and mechanism design, vol 4. World Scientific [
DOI:10.1142/8902]
36. Nasl Mousavi , H. , Hosseini Shirvani M . , Nazarpour M . (1399). Presenting a tax evasion prediction model based on ID3 decision tree algorithm and Bayesian network. Tax research paper. 28 (45): 59-87. (Persian).
37. OECD. Shining light on the shadow economy: Opportunities and threats. https://www.oecd.org/tax/crime/shining-light-on-the-shadow-economy-opportunities -and-threats.pdf, 2017. Accessed: 2020-02-20.
38. Oliva, Rogelio. "Model structure analysis through graph theory: partition heuristics and feedback structure decomposition." System Dynamics Review 20 (2004): 313-336. [
DOI:10.1002/sdr.298]
39. P. C. Gonza'lez and J. D. Vela'squez. Characterization and detection of taxpayers with false invoices using data mining techniques. Expert Systems with Applications, 40(5):1427-1436, 2013. [
DOI:10.1016/j.eswa.2012.08.051]
40. Pourzaker Arabani S. , Ebrahimpour Komleh H . (2018). Optimizing cash demand forecasting of ATMs in the country's banking network using LSTM deep recurrent neural network. Operations research in its applications. 16 (3): 69-88. (Persian).
41. R.-S. Wu, C. Ou, H.-y. Lin, S.-I. Chang, and D. C. Yen. Using data mining technique to enhance tax evasion detection performance. Expert Systems with Applications, 39(10):8769-8777, Aug. 2012. doi: 10.1016/j.eswa.2012.01.204 [
DOI:10.1016/j.eswa.2012.01.204]
42. Rahimi Kia, I. , Mohammadi, Sh. , Ghazanfari, M . (2014). Detection of tax evasion using hybrid intelligent system. Research Journal of Taxation, 23 (26): 136-164. (Persian).
43. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN COMPUT. SCI. 2, 420 (2021). [
DOI:10.1007/s42979-021-00815-1]
44. Sedaghati, S. , Farhadi , R. , Fallah Shams, M . (1403). Contagion of topological dynamics in the Iranian stock market network. Investment Knowledge, 13(49), 279-298. (Persian).
45. T. Matos, J. A. F. de Macedo, and J. M. Monteiro. An empirical method for discovering tax fraudsters: A real case study of brazilian fiscal evasion. In Proceedings of the 19th International Database Engineering & Applications Symposium, IDEAS 15, p. 4148. Association for Computing Machinery, New York, NY, USA, 2015. doi: 10.1145/2790755.2790759 [
DOI:10.1145/2790755.2790759]
46. Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. https:// doi.org/10.3390/computers12050091 [
DOI:10.3390/computers12050091]
47. U. Nations. United Nations Practical Manual on Transfer Pricing for Developing Countries, 2017
48. X. Liu, D. Pan, and S. Chen. Application of hierarchical clustering in tax inspection case-selecting. In 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1-4. IEEE, 2010. doi: 10.1109/CISE.2010.5676711 [
DOI:10.1109/CISE.2010.5676711]
49. Y. Lin, K. Wong, Y. Wang, R. Zhang, B. Dong, H. Qu, and Q. Zheng. Taxthemis: Interactive mining and exploration of suspicious tax evasion groups. IEEE Transactions on Visualization and Computer Graphics, 27(2):849-859, 2021. doi: 10.1109/TVCG.2020.3030370 5 [
DOI:10.1109/TVCG.2020.3030370]
50. Yeonkook J Kim, Bok Baik, and Sungzoon Cho. Detecting financial misstatements with fraud intention using multi-class cost-sensitive learning. Expert Systems with Applications, 62:32-43, 2016. [
DOI:10.1016/j.eswa.2016.06.016]
51. Zhou, F., Zhou, H. M., Yang, Z., & Yang, L. (2019). EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction. Expert Systems with Applications, 115, 136-151. [
DOI:10.1016/j.eswa.2018.07.065]