1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید
2. Fazel Yazdi, A., Moinuddin, M. (2013). Risk Analysis of Accounting Information Systems, Auditor Magazine, No. 60, pp. 106 - 111, (Persian).
3. Hajiha, Z. (2010). An Investigation on the Relationship between Inherent and Control Risks in Risk Based Audit Approach, Financial Accounting; 2(6), pp. 95-120, (Persian).
4. Masihi, M., Yaghoobnejad, A., Keyghobadi, A., Torabi, T. (2019). Using Data Mining Techniques to Measure Tax Risk of Value Added Taxes, Journal of Investment Knowledge, 8(32), pp. 347-363 (Persian).
5. Mohammadi, T., Arab Maziar Yazdi, A., Ghasemi, A, Taklif, A., jalalpanahi, R. (2020). Balance of Payment Constrained Growth in Tow Developing and Developed Oil-Exporting Economies (Case Study: Iran and Norway) qjerp, 27 (92), pp. 257-296 (Persian).
6. Namazi, M., Sadeghzadeh Maharluie, M. (2018). Predicting Tax Evasion by Decision Tree Algorithms, Financial Accounting, 9(36), pp. 76-100, (Persian).
7. Setayesh, M., Ebrahimi, F., SAIF, S., Sarikhani, M. (2013). Forecasting the Type of Audit Opinions: A Data Mining Approach, Management Accounting, 5(15), pp. 69-82, (Persian).
8. Bell, T. B., Peecher, M. E., Solomon, I. (2005). The 21st Century Public Company Audit: Conceptual Elements of KPMGs Global Audit Methodology', KPMG, LLP.
9. Ding, N., Zhang, X., Zhai, Y., & Li, C. (2021). Risk Assessment of VAT Invoice Crime Levels of Companies Based on DFPSVM: a Case Study in China', Risk Management, Palgrave Macmillan, vol. 23(1), pp. 75-96.
10. De Roux, D., Perez, B., Moreno, A., Villamil, M. D. P., and Figueroa, C. (2018). Tax Fraud Detection for Under-reporting Declarations using an Unsupervised Machine Learning Approach, In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 215-222.
11. Efstathios. K., Spathis. Ch., Nanopoulos.A and Y. Manolopoulos, (2007). Identifying Qualified Auditors Opinions: A Data Mining Approach, Journal of Emerging Technologies Accounting, Vol.4, pp 183-197.
12. Hirsh-Pasek, Kathy, et al. (2015). Putting Education in Educational' Apps: Lessons from the Science of Learning. Psychological Science in the Public Interest 16.1, pp. 3-34.
13. Karahoca, Adem, Dilek Karahoca, and Mert Şanver. (2012). Survey of Data Mining and Applications (Review from 1996 to Now), Data Mining Applications in Engineering and Medicine: 1.
14. Kiros, Efstathios, Charalambos Spathis, and Yannis Manolopoulos. (2007). Data Mining Techniques for the Detection of Fraudulent Financial Statements, Expert Systems with Applications 32.4, pp. 995-1003.
15. Murorunkwere, B., F., Haughton, H., Nzabanita, J. Kipkogei, F. & Kabano, I. (2023). Predicting Tax Fraud using Supervised Machine Learning Approach, African Journal of Science, Technology, Innovation and Development, 15:6, 731-742.
16. O,Dannell, E and J,Schults. (2003). The influence of Strategic-Systems Lens of Auditor Risk Assessments, working paper, Arizona state University.
17. Placencia, J. O., Hallo, M., & Luján-Mora, S. (2020). Detection of Taxpayers with High Probability of Non-payment: An Implementation of a Data Mining Framework, In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-6. IEEE.
18. Ruzgas T, Kižauskienė L, Lukauskas M, Sinkevičius E, Frolovaitė M, Arnastauskaitė J. (2023). Tax Fraud Reduction Using Analytics in an East European Country', Axioms. 12(3).
19. Fazel Yazdi, A., Moinuddin, M. (2013). Risk Analysis of Accounting Information Systems, Auditor Magazine, No. 60, pp. 106 - 111, (Persian).
20. Hajiha, Z. (2010). An Investigation on the Relationship between Inherent and Control Risks in Risk Based Audit Approach, Financial Accounting; 2(6), pp. 95-120, (Persian).
21. Masihi, M., Yaghoobnejad, A., Keyghobadi, A., Torabi, T. (2019). Using Data Mining Techniques to Measure Tax Risk of Value Added Taxes, Journal of Investment Knowledge, 8(32), pp. 347-363 (Persian).
22. Mohammadi, T., Arab Maziar Yazdi, A., Ghasemi, A, Taklif, A., jalalpanahi, R. (2020). Balance of Payment Constrained Growth in Tow Developing and Developed Oil-Exporting Economies (Case Study: Iran and Norway) qjerp, 27 (92), pp. 257-296 (Persian).
23. Namazi, M., Sadeghzadeh Maharluie, M. (2018). Predicting Tax Evasion by Decision Tree Algorithms, Financial Accounting, 9(36), pp. 76-100, (Persian).
24. Setayesh, M., Ebrahimi, F., SAIF, S., Sarikhani, M. (2013). Forecasting the Type of Audit Opinions: A Data Mining Approach, Management Accounting, 5(15), pp. 69-82, (Persian).
25. Bell, T. B., Peecher, M. E., Solomon, I. (2005). The 21st Century Public Company Audit: Conceptual Elements of KPMGs Global Audit Methodology', KPMG, LLP.
26. Ding, N., Zhang, X., Zhai, Y., & Li, C. (2021). Risk Assessment of VAT Invoice Crime Levels of Companies Based on DFPSVM: a Case Study in China', Risk Management, Palgrave Macmillan, vol. 23(1), pp. 75-96.
27. De Roux, D., Perez, B., Moreno, A., Villamil, M. D. P., and Figueroa, C. (2018). Tax Fraud Detection for Under-reporting Declarations using an Unsupervised Machine Learning Approach, In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 215-222.
29. Efstathios. K., Spathis. Ch., Nanopoulos.A and Y. Manolopoulos, (2007). Identifying Qualified Auditors Opinions: A Data Mining Approach, Journal of Emerging Technologies Accounting, Vol.4, pp 183-197. [
DOI:10.2308/jeta.2007.4.1.183 https://doi.org/10.2308/jeta.2007.4.1.183]
30. Hirsh-Pasek, Kathy, et al. (2015). Putting Education in Educational' Apps: Lessons from the Science of Learning. Psychological Science in the Public Interest 16.1, pp. 3-34. [
DOI:10.1177/1529100615569721]
31. Karahoca, Adem, Dilek Karahoca, and Mert Şanver. (2012). Survey of Data Mining and Applications (Review from 1996 to Now), Data Mining Applications in Engineering and Medicine: 1.
32. Kiros, Efstathios, Charalambos Spathis, and Yannis Manolopoulos. (2007). Data Mining Techniques for the Detection of Fraudulent Financial Statements, Expert Systems with Applications 32.4, pp. 995-1003.
33. Murorunkwere, B., F., Haughton, H., Nzabanita, J. Kipkogei, F. & Kabano, I. (2023). Predicting Tax Fraud using Supervised Machine Learning Approach, African Journal of Science, Technology, Innovation and Development, 15:6, 731-742.
34. O,Dannell, E and J,Schults. (2003). The influence of Strategic-Systems Lens of Auditor Risk Assessments, working paper, Arizona state University.
35. Placencia, J. O., Hallo, M., & Luján-Mora, S. (2020). Detection of Taxpayers with High Probability of Non-payment: An Implementation of a Data Mining Framework, In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-6. IEEE.
36. Ruzgas T, Kižauskienė L, Lukauskas M, Sinkevičius E, Frolovaitė M, Arnastauskaitė J. (2023). Tax Fraud Reduction Using Analytics in an East European Country', Axioms. 12(3).