Volume 32, Issue 61 (2024)                   J Tax Res 2024, 32(61): 55-85 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiaei M, Behzadi Mozri S, Barani Bonab S. Presenting the data governance model in the country's tax affairs organization, a study in the smart tax system. J Tax Res 2024; 32 (61) :55-85
URL: http://taxjournal.ir/article-1-2376-en.html
1- , mjtkiaei@gmail.com
Abstract:   (1706 Views)
Today, the country's tax affairs organization is faced with a huge amount of different data, which needs to be used as a valuable asset for the organization's major goals in order to effectively manage the data, make the tax system smarter and create added value. Therefore, considering that the mentioned organization has based many of its activities on a digital economy and based on the use of electronic technologies, the implementation of the data governance system in the tax affairs organization seems to be a necessity. Therefore, in this research, a model has been designed for the data governance model in the tax affairs organization, which, in addition to being new and innovative, can be used as a road map to move towards the intelligentization of the tax system. The present research is developmental-applicative in terms of purpose and is among mixed research. The participants in this stage were 19 experts who were selected with a purposeful method, and also, in a quantitative stage, 109 managers, deputies and senior experts of information and communication technology and informatics of the mentioned organization in Tehran were asked for their opinion with a questionnaire. , the sample size calculation method was Cochran's formula and simple random sampling method. In order to validate the model, confirmatory factor analysis method was used. For data governance in the tax affairs organization, 4 dimensions including data management, infrastructural, organizational and management factors and 15 components were identified. Also, the results of the confirmatory factor analysis showed that all the identified variables were confirmed and data management factors and management factors had the highest coefficient of determination. Based on the results, data governance in the tax affairs organization is a complex and multi-dimensional phenomenon whose implementation is necessary for the realization of a smart tax system.
 
Full-Text [PDF 1249 kb]   (1035 Downloads)    
Type of Study: Research | Subject: Management
Received: 2024/05/14 | Accepted: 2024/05/30 | Published: 2024/05/14

References
1.  کامیاب تیموری، رضا، رستمی، احسان، الماسی، مجتبی و روحی، مرتضی(1402). ارائه مدلی برای سازمان مالیاتی هوشمند با استفاده از رویکرد معادلات ساختاری. پژوهشنامه مالیات، دوره سی و یکم، شماره 57، 69-94.
2.  سامی، احمد، احمدی، مسعود، غفاری، رحمان و محمدی زاده، چنگیز (1401). مدل حکمرانی داده‌باز در راستای سلامت اداری با استقرار دولت الکترونیک در سازمان امور مالیاتی. سیاست های راهبردی و کلان، دوره دهم، شماره 40، 826-846.
3.  جلیلی، فریبا، درودی، فریبرز و فامیل روحانی، علی اکبر (1400). بررسی راهبردهای حاکمیت داده برای ارائه خدمات اطلاعاتی مؤثر در کتابخانه‌های دانشگاهی. دوره سی و ششم، شماره 106، 1031-1048.
4.  میرزایی، ابراهیم و فرساد امان اللهی، غلامرضا (1401). شناسایی عوامل موثر بر حاکمیت مطلوب مالیاتی در ایران. دانش حسابداری و حسابرسی مدیریت، دوره یازدهم، شماره 44، 297-308.
5.  مرتضوی، محمدرضا.(1397). طراحی چارچوب حاکمیت داده در مراکز تبادل داده و اطلاعات ملی (مورد مطالعه: وزارت علوم، تحقیقات، و فناوری). تهران: پژوهشگاه علوم و فناوری اطلاعات ایران(ایران داک).
6.  اکبری، سعیده.(1396). ارائه یک مدل بلوغ سنجش کیفیت داده¬ها به عنوان پیش نیاز داده کاوی در سازمانها. پایان¬نامه کارشناسی ارشد،.گروه صنایع. دانشکده فنی و مهندسی. دانشگاه غیرانتفاعی خاتم.
7.  فتح اله زاده، فرحناز و امینی، مصطفی (1396). مروری بر مدل های بلوغ حکمرانی داده ها در بنگاه های اقتصادی. ارائه شده در پنجمین همایش مدیران فناوری اطلاعات، پژوهشگاه علوم و فناوری اطلاعات ایران، تهران، ایران.
8.  نیک¬پور، محسن.(1396). بررسی عوامل کلیدی موفقیت در ایجاد سیستم مدیریت امنیت اطلاعات (ISMS) در سازمان امور مالیاتی کشور. پایان¬نامه کارشناسی ارشد، رشته مدیریت فناوری اطلاعات. دانشکده مدیریت اقتصاد و حسابداری ( مرکز تهران غرب). دانشگاه پیام¬نور.
9.  Alhassan, I., & Sammon, D. & Daly, M. (2019) Critical success factors for data governance: a telecommunications case study, Journal of Decision Systems, 28(1), 41-61, [DOI:10.1080/12460125.2019.1633226]
10.  Association of Chartered Certified Accounts (ACCA) 2018, 'Technology tools and the future of tax administration', research insight report, 13 December. Available at: https://www.accaglobal.com/hk/en/professional-insights/global-profession/technology-tools.html
11.  Baisalbayeva, K., Enden, E.,. Tenan, R. & Flores, R. (2018). The Data Intelligent Tax Administration, Meeting the challenges of Big Tax Data and Analytics, Microsoft and PricewaterhouseCoopers Belastingadviseurs N.V. (KvK 34180284). All rights reserved. http://www.pwc.com/structure . Pp:5.
12.  Begg, C. & Caira, T. (2011). Data governance in practice: the SME quandary reflections on the reality of data governance in the small to medium enterprise (SME). sector. In: Proceedings of 5th European Conference on Management Information and Evaluation System, 75-83.
13.  Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77-10. [DOI:10.1191/1478088706qp063oa]
14.  Collbira. (2021). Creating a data governance framework. https://www.collibra.com/us/en/blog/creating-a-data-governance-framework.
15.  Dai, W., Wardlaw, I., Cui, Y., Mehdi, K., Li, Y., Long, J. (2016). Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking. In: Latifi, S. (eds) Information Technology: New Generations. Advances in Intelligent Systems and Computing, 448, 439-450. [DOI:10.1007/978-3-319-32467-8_39]
16.  Davidson, E., Wessel, L., Winter, J. S. & Winter, S. (2023). Future directions for scholarship on data governance, digital innovation, and grand challenges. Information and Organization, 33(1), 100454. [DOI:10.1016/j.infoandorg.2023.100454]
17.  Filgueiras, F. & Lui, L. (2023). Designing data governance in Brazil: an institutional analysis. Policy Design and Practice, 6(1), 41-56. [DOI:10.1080/25741292.2022.2065065]
18.  Gregory, R.W. Henfridsson, O., Kaganer, E. & Kyriakou, H. (2021). The role of artificial intelligence and data network effects for creating user value. Academy of Management Review, 46(3), 534-551. [DOI:10.5465/amr.2019.0178]
19.  Griffin, J. (2005). Data governance: A strategy for success. DM Review, 15(6).
20.  Karkošková, S. (2023). Data Governance Model To Enhance Data Quality In Financial Institutions. Information Systems Management, 40(1), 90-110. [DOI:10.1080/10580530.2022.2042628]
21.  Khatri, V., & C. V. Brown. (2010). Designing data governance. Communications of the ACM 53 (1): 148-152. [DOI:10.1145/1629175.1629210]
22.  Koltay, T. (2016). Data governance, data literacy and the management of data quality. IFLA journal, 42(4), 303-312. [DOI:10.1177/0340035216672238]
23.  Ladley, J. (2012). Data Governance How to Design, Deploy, And Sustain an Effective Data Governance Program, https://doi.org/10.1016/C2017-0-03353-0 [DOI:10.1016/C2017-0-03353-0.]
24.  Madison, M.J. (2020). Tools for data governance University of Pittsburgh Legal Studies Research Paper, 23, 29-43.
25.  Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. John Wiley & Sons.
26.  Rivera, S. Loarte, N. Raymundo, C. & Dominguez, F. (2017). Data Governance Maturity Model for Micro Financial Organizations in Peru. ICEIS 2017 - Proceedings of the 19th International Conference on Enterprise Information Systems, 203-214. [DOI:10.5220/0006149202030214]
27.  Solomonides, A. (2023). Research Data Governance, Roles, and Infrastructure. In: Richesson, R.L., Andrews, J.E., Fultz Hollis, K. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-031-27173-1_11 [DOI:10.1007/978-3-031-27173-1_11.]
28.  Thomas, G. (2008). The DGI Data Governance Framework: The Data Governance Institute. Orlando, FL, USA: Data Governance Institute.
29.  Van Donge, W., Bharosa, N., & Janssen, M.F.W.H.A. (2022). Data-driven government: Cross-case comparison of data stewardship in data ecosystems. Government Information Quarterly, 39(2), 101642. [DOI:10.1016/j.giq.2021.101642]
30.  Walsh, M.J., McAvoy, J. & Sammon, D. (2022). Grounding data governance motivations: a review of the literature. Journal of Decision Systems, 31(1), 282-298. [DOI:10.1080/12460125.2022.2073637]
31.  Wolfers, L. Duijkers, r & Zegers, a. (2021). Tax Data Management. KPMG, 1-14.
32.  Zhang, O., Sun, X., & Zhang, M. (2022). Data Matters: A Strategic Action Framework for Data Governance. Information & Management, 59(4), 103642. [DOI:10.1016/j.im.2022.103642]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Tax Research

Designed & Developed by : Yektaweb