[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: year 25, Issue 33 (6-2017) ::
tax research 2017, 25(33): 167-193 Back to browse issues page
The Detection of Taxpayers with False Invoices using Data Mining Techniques
Abstract:   (961 Views)
In this paper, we present indices by which it is possible to characterize and detect those potential users of false invoices in a given year, depending on the information of their tax payment, their historical performance and characteristics, using different types of data mining techniques. In this research first, clustering algorithms like Self- Organizing Map (SOM) and neural gas networks are used to identify groups of similar behaviors of taxpayers. Then decision trees, neural networks and Bayesian networks are used to identify those variables that are related to conduct of fraud and/or no fraud, detect patterns of associated behavior and establishing to what extent cases of fraud and/or no fraud can be detected with the available information. We utilize some information gained from tax auditors who are working in the Tax offices of Tehran and the informal unofficial statistics and anonymous questionnaire from some companies to gain primary data to detect fraud and compare different techniques of false invoices. To determine the main indexes in false invoices, we divided taxpayers to the micro and small enterprises and on the other side medium and large enterprises and examined the factors of fraud on each groups, with neural gas networks, separately. Particularly the neural gas method found that it was possible to identify some relevant variables to differentiate between good or bad behavior, not necessarily associated with the use and sale of false invoices. Kohonen’s method however, did not provide any behavioral patterns. In the case of micro and small businesses, the percentage of correctly detected fraud cases was 92%, while in the case of medium and large enterprises, this percentage was 89%.
Keywords: : False Invoices, Fraud Detection, Data Mining, Clustering, Neural Networks, Gas Neural Networks
Full-Text [PDF 3583 kb]   (1164 Downloads)    
Type of Study: Research | Subject: Economic
Received: 2017/09/17 | Accepted: 2017/09/17 | Published: 2017/09/17
Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

The Detection of Taxpayers with False Invoices using Data Mining Techniques. tax research. 2017; 25 (33)
URL: http://taxjournal.ir/article-1-1113-en.html

year 25, Issue 33 (6-2017) Back to browse issues page
فصلنامه پژوهشنامه مالیات (علمی-پژوهشی) Iranian National Tax Administration (INTA)
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3825