Volume 0 -                   J Tax Res 2025, 0 - : 39-69 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghahreman navehsi F, Hakimi M. Modeling the Quality of the Data-Driven Tax System Using Artificial Intelligence. J Tax Res 2025; https://doi.org/10.61882/taxjournal.0.39
URL: http://taxjournal.ir/article-1-2532-en.html
1- Tax Auditor of West Azerbaijan Province, Urmia City , f.ghahremani7@gmail.com
2- Urmia City - West Azerbaijan's audit function of tax legal entities
Abstract:   (242 Views)
The present research aims to qualitatively model the data-driven tax system using artificial intelligence. This study is applied in nature and is descriptive-analytical in type. The research method is qualitative. The statistical population of this research consists of academic experts in the fields of finance and artificial intelligence, as well as experienced tax managers in Tehran, from which 13 individuals were selected using purposeful sampling and theoretical saturation. The qualitative data collection tool involved a semi-structured interview based on theoretical foundations. The analysis of this section was performed using thematic analysis. The results of this section of the research were categorized into four organizing themes and 16 basic themes within a thematic network. The qualitative findings indicated that the main drivers for utilizing artificial intelligence in the tax system include the increase in volume and diversity of tax data, advances in information technology, and public demand for higher transparency and efficiency. To effectively utilize this technology, strategies such as establishing integrated data infrastructures, developing artificial intelligence algorithms for detecting tax evasion and fraud, and providing personalized tax services should be implemented. The implementation of these strategies can lead to positive outcomes such as increased tax revenues, reduced tax evasion, and improved taxpayer satisfaction. However, challenges such as data privacy issues, the need for training and empowering staff, and necessary investments in infrastructure must also be considered in the implementation process to effectively achieve the goals of the tax system.
Full-Text [PDF 918 kb]   (133 Downloads)    
Type of Study: Research | Subject: Economic
Received: 2025/08/16 | Accepted: 2025/09/1 | Published: 2025/09/1

References
1. خالقیان، ‌بیتا، حسین‌پور، ‌و یاسر، طلوعی. (1402). نقش هوش مصنوعی در حسابداری و مالیات. مطالعات مدیریت و حسابداری، 43(9)، 40-47.‎
2. دهنوی، حمید، و دشتی، زهرا. (1403). نقش هوش مصنوعی در کاهش خطاهای حسابداری و بهبود گزارش مالیاتی. نشریه علمی رویکردهای پژوهشی نوین مدیریت و حسابداری، 8(1)، 1587-1610.
3. رستم‌بیگی، حمیدرضا، و آینه‌بند، مقداد. (1402). فرار مالیاتی اشخاص حقوقی با استفاده از هوش مصنوعی. پژوهشنامه مالیات، 31(60)، 200 - 217.
4. مقری گردرودباری، محسن، داداشی، ایمان، محسنی ملکی، بهرام، و ذبیحی، علی. (1402). پیش‌بینی فرار مالیاتی مؤدیان حقوقی با تأکید بر مولفه‌های اقتصادی، مؤدیان و حسابرسان مالیاتی؛ با تکیه بر هوش مصنوعی. پژوهشنامه مالیات، 31(58)، 131 - 164.
5. نقی‌ها نجف‌آبادی، روح‌الله. (1403). بررسی جامع تحقیقات مرتبط با هوش مصنوعی در حسابداری، مالیات، مدیریت مالی و مسیر پیش‌رو. چشم انداز حسابداری و مدیریت، 7(97)، 1-10.
6. پورعلی، محمدرضا، و معزی، سودابه. (1403). حسابداری و مالیات‌ستانی هوشمند. نشریه علمی رویکردهای پژوهشی نوین مدیریت و حسابداری، 8(30)، 40-55.
7. قانونی شیشوان، وحیده، الهی، شعبان، دری نوگورانی، صادق، و یزدیان ورجانی، علی. (1403). سیستم مالیات بر ارزش ‌افزوده مبتنی بر بلاکچین: مرور نظام‌مند. تحقیقات مالی، 26(2)، 226-247.
8. کامیاب‌تیموری، رضا، الماسی، مجتبی، رستمی، احسان، و روحی، مرتضی. (1402). ارائه مدلی برای سازمان مالیاتی هوشمند با استفاده از رویکرد معادلات ساختاری. پژوهشنامه مالیات، 105(31)، 69-94.‎
9. References
10. Apsilyam, N. M., & Shamsudinova, L. R. (2025). How Digital Technologies Are Changing Approaches to Taxation. International Scientific-Electronic Journal of Pioneering Studies and Theories, 1(3), 16-21.
11. Bhengu, T. I. (2023). A Critical Look at the Challenges and Benefits of Artificial Intelligence (AI) In Tax Administration: A South African Perspective. Retrieved from https://repository.up.ac.za/bitstream/handle/2263/94384/Bhengu_Critical_2023.pdf?sequence=3
12. Biryukov, A., & Antonova, N. (2019). Expert Systems of Real Time as Key Tendency of Artificial Intelligence in Tax Administration. In Digital Science (111-118). New York: Springer International Publishing. [DOI:10.1007/978-3-030-02351-5_15]
13. Corrado, C., Haskel, J., Iommi, M., & Jona Lasinio, C. S. (2022). Measuring Data as an Asset: Framework, Methods and Preliminary Estimates. OECD Economics Department Working Papers, 1731, 1-20.
14. de Souza, K. L. C. M., & de Siqueira, M. (2024). Smart Tax: How can Smart Cities Taxation achieve the Sustainable Development Goals? Current Tax Law Journal, 56, 419-441. [DOI:10.46801/2595-6280.56.19.2024.2526]
15. Ehrke-Rabel, T. (2025). Tax Administration AI: The Holy Grail to Overcome Information Asymmetry in Tax Enforcement? Intertax, 53(2), 128-140. [DOI:10.54648/TAXI2025019]
16. Emadi, J. (2023). The Development of a Design Theory for Web Based Information Systems. Journal of Robotics Spectrum, 1, 013-023. [DOI:10.53759/9852/JRS202301002]
17. Han, N., Xu, W., Song, Q., Zhao, K., & Xu, Y. (2025). Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry. Sustainability, 17(3), 1121. [DOI:10.3390/su17031121]
18. Hartanto, D., Agussani, A., & Dalle, J. (2021). Antecedents of Public Trust in Government during the COVID-19 Pandemic in Indonesia. Journal of Ethnic and Cultural Studies, 8(4), 321-341. [DOI:10.29333/ejecs/975]
19. Huang, Z. (2018). Discussion on the Development of Artificial Intelligence in Taxation. American Journal of Industrial and Business Management, 8(8), 1817. [DOI:10.4236/ajibm.2018.88123]
20. Hujran, O., Al-Debei, M. M., Al-Adwan, A. S., Alarabiat, A., & Altarawneh, N. (2023). Examining the Antecedents and Outcomes of Smart Government Usage: An Integrated Model. Government Information Quarterly, 40(1), 101783. [DOI:10.1016/j.giq.2022.101783]
21. Larrouquere, V. (2021). Critique and Rethinking of the Dichotomy between Profit Theory and Contributive Capacity Theory in Tax Justice. Lex Electronica, 26, 120-129.
22. Mökander, J., & Schroeder, R. (2024). Artificial Intelligence, Rationalization, and the Limits of Control in the Public Sector: The Case of Tax Policy Optimization. Social Science Computer Review, 42(6), 1359-1378. [DOI:10.1177/08944393241235175]
23. Nuryani, N., Mutiara, A. B., Wiryana, I. M., Purnamasari, D., & Putra, S. N. W. (2024). Artificial Intelligence Model for Detecting Tax Evasion Involving Complex Network Schemes. Aptisi Transactions on Technopreneurship (ATT), 6(3), 339-356. [DOI:10.34306/att.v6i3.436]
24. Raikov, A. L. E. X. A. N. D. E. R. (2021). Decreasing Tax Evasion by Artificial Intelligence. IFAC-PapersOnLine, 54(13), 172-177. [DOI:10.1016/j.ifacol.2021.10.440]
25. Rathi, A., Sharma, S., Lodha, G., & Srivastava, M. (2021). A Study on Application of Artificial Intelligence and Machine Learning in Indian Taxation System. Psychology and Education Journal, 58(2), 1226-1233. [DOI:10.17762/pae.v58i2.2265]
26. Saba, C. S., & Monkam, N. (2025). Artificial Intelligence's (AI's) Role in Enhancing Tax Revenue, Institutional Quality, and Economic Growth in Selected BRICS-Plus Countries. Journal of Social and Economic Development, Retrieved from https://link.springer.com/content/pdf/10.1007/s40847-024-00401-0.pdf [DOI:10.1007/s40847-024-00401-0]
27. Saragih, A. H., Reyhani, Q., Setyowati, M. S., & Hendrawan, A. (2023). The Potential of an Artificial Intelligence (AI) Application for the Tax Administration System's Modernization: The Case of Indonesia. Artificial Intelligence and Law, 31(3), 491-514. [DOI:10.1007/s10506-022-09321-y]
28. Wang, Y., & Wang, P. (2020, June). New Personal Tax Collection Management System Based on Artificial Intelligence and Its Application in the Middle Class. Journal of Physics: Conference Series, 1574(1), 012105 [DOI:10.1088/1742-6596/1574/1/012105]
29. Yarichina, G. F., Butakova, N. M., Govorina, O. V., & Goryacheva, O. E. (2021). Artificial Intelligence as a Result of Intellectual Activity: Accounting and Tax Aspects. In Current Problems and Ways of Industry Development: Equipment and Technologies (883-889). Cham: Springer International Publishing. [DOI:10.1007/978-3-030-69421-0_97]
30. Zhang, J. (2023). Optimization of the Environmental Protection Tax System Design Based on Artificial Intelligence. Frontiers in Environmental Science, 10, 1076158. [DOI:10.3389/fenvs.2022.1076158]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Tax Research

Designed & Developed by : Yektaweb